Radianmål for vinkler


Radianmål er en særlig måleenhed til måling af vinkelstørrelser, der er anderledes end gradmålet for vinklen.

Med centrum i vinkelspidsen tegner man en cirkel med radius 1. Radianmålet for vinklen er da længden af den cirkelbue, som afskæres af vinklens ben.

Da omkredsen af en cirkel med radius 1 (enhedscirkel) er 2π, svarer gradmålet 360° til radianmålet 2π. Dermed kommer 180° til at svare til π, 90° til \(\frac{\pi}{2}\) osv.

Eksempler

I tabellen herunder er angivet såvel gradmål som radianmål for nogle udvalgte vinkler:

Gradmål
 0º  30º  45º  60º  90º  120º  135º  180º
 Radianmål  0  \(\frac{\pi}{6}\)  \(\frac{\pi}{4}\)  \(\frac{\pi}{3}\)  \(\frac{\pi}{2}\)  \(\frac{2\pi}{3}\)  \(\frac{3\pi}{4}\)  \(\pi\)

Med radianmålet kan man tale om positive og negative vinkler. Hvis man måler mod uret, regnes vinklen positiv, og hvis man måler med uret, regnes vinklen negativ. På figurerne er vinklerne lagt ind i et koordinatsystem med centrum i (0, 0) og x-aksen som det ene ben. Cirklen er koordinatsystemets enhedscirkel.

Man kan også tale om vinkler, der er større end 2π (dvs. større end 360°).

Det betyder blot, at man måler mere end en gang rundt pa enhedscirklen.